Analysis of L-cone/M-cone visual pigment gene arrays in Japanese males with protan color-vision deficiency

نویسندگان

  • Hisao Ueyama
  • Shigeki Kuwayama
  • Hiroo Imai
  • Sanae Oda
  • Yasuhiro Nishida
  • Shoko Tanabe
  • Yoshinori Shichida
  • Shinichi Yamade
چکیده

The L-cone/M-cone visual pigment gene arrays were analyzed in 125 Japanese males with protan color-vision deficiency. Arrays were successfully determined in 62/65 subjects with protanopia and 57/60 protanomaly subjects. Among the 62 protanopia subjects, 48 (77%) had an array consisting of a single 5' L-M hybrid gene (PS-array) or a 5' L-M hybrid gene followed by an M gene(s) that was structurally identical to the hybrid gene (PI-array). In the remaining 14 subjects, 11 had an array consisting of a 5' L-M hybrid gene followed by an M gene(s) that was structurally different from the hybrid gene (PD-array) and 3 subjects had an apparently normal array consisting of a single L gene followed by an M gene(s) (PN-array). In the 11 subjects with the PD-array, subject A67 had an 11 bp-deletion in exon 3 of the downstream genes and 6 had an A-71C substitution in the second gene of the array. In the 3 subjects with the PN-array, subject A289 had a missense mutation (Pro231Leu) in exon 4 of the L gene. When the function of the missense mutation was studied by in vitro reconstitution of visual pigments, it was found to be deleterious to both cone opsin and rhodopsin. Among the 57 protanomaly subjects, 49 (86%) had the PD-array, but 25 subjects had a difference only in exon 2 between the first and downstream genes that suggested a contribution of exon 2-encoded difference in the M pigment to color-discrimination. In the remaining 8 subjects, 2 had the PS-array, 2 had the PI-array and the other 4, including subject A89 with a missense mutation (Glu338Gly) in the L gene, had the PN-array. Genotype-phenotype relationships in protan color-vision deficiency are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of L-cone/M-cone visual pigment gene arrays in females by long-range PCR

The L-cone/M-cone visual pigment gene arrays were analyzed in a group of 63 Japanese females consisting of 7 applicants for examination of their carrier status, 14 color-deficient females, 6 obligate carriers with no genotypic data available for affected father or sons, and 36 color-normals. The first and the downstream genes, the entire region from the promoter to exon 6, were each amplified v...

متن کامل

X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene

In this report, we describe a male subject who presents with a complex phenotype of myopia associated with cone dysfunction and a protan vision deficiency. Retinal imaging demonstrates extensive cone disruption, including the presence of non-waveguiding cones, an overall thinning of the retina, and an irregular mottled appearance of the hyper-reflective band associated with the inner segment el...

متن کامل

Molecular genetic detection of female carriers of protan defects

Females heterozygous for congenital colour vision defects are of interest because they are believed to have cone photoreceptor ratios and cone photopigments that differ from normal. We describe a molecular genetic method to identify protan carriers that involves characterizing the genes that occur in the most upstream position in each of the X-chromosome photopigment gene arrays.

متن کامل

Organization of the human trichromatic cone mosaic.

Using high-resolution adaptive-optics imaging combined with retinal densitometry, we characterized the arrangement of short- (S), middle- (M), and long- (L) wavelength-sensitive cones in eight human foveal mosaics. As suggested by previous studies, we found males with normal color vision that varied in the ratio of L to M cones (from 1.1:1 to 16.5:1). We also found a protan carrier with an even...

متن کامل

Molecular genetics of colour vision deficiencies.

Common variation in colour vision exists among both colour normal and colour deficient subjects. Differences at a few amino acid positions that influence the spectra of the L and M cone pigments account for most of this variation. The genes encoding the L and M photopigments are arranged in head-to-tail arrays on the X-chromosome, beginning with the L and followed by one or more M pigment genes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2004